Adaptive Maneuver Load Alleviation for Flexible Wing Aircraft with Nonminimum Phase Zeros
نویسندگان
چکیده
A two-part control system is designed for flight path angle command tracking that includes an adaptive control component to reduce maneuver load. The primary controller is nonadaptive and facilitates the tracking goal. The secondary controller is adaptive and is tasked only with reducing the maneuver load resulting from the tracking objective. It is designed to function in addition to the primary controller and is allocated control surfaces that are separate from those used by the primary. The secondary controller utilizes an output feedback model reference adaptive control framework that can accommodate systems with nonminimum phase zeros so long as an estimate of these zeros is available. Performance of the control design is demonstrated in simulation of a reduced stiffness, transport-type aircraft.
منابع مشابه
Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft
As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight materia...
متن کاملMulti-Objective Adaptive Control for Load Alleviation and Drag Minimization of Flexible Aircraft
This paper describes a multi-objective flight control system design for flexible aircraft to take advantage of the availability of multi-functional distributed flight control surfaces to simultaneously gain aerodynamic efficiency, maneuver and gust load alleviation, and aeroservoelastic (ASE) mode suppression while maintaining traditional pilot command-tracking tasks. A multi-objective optimal ...
متن کاملTip Extensions, Winglets, and C-wings: Conceptual Design and Optimization
Conceptual wing design analysis methods are combined with numerical optimization to find minimum drag wings subject to constraints on lift, weight, pitching moment, and stall speed. Minimum drag tip extensions and winglets are compared using nonlinear optimization. The minimum drag trapezoidal tip device depends on the ratio of the maneuver lift coefficient to the cruise lift coefficient, altho...
متن کاملPerformance Optimizing Adaptive Control with Time-Varying Reference Model Modification
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the pe...
متن کاملPerformance Optimizing Gust Load Alleviation Control of Flexible Wing Aircraft
This paper details a control design for flexible wing aircraft that attempts to minimize the load induced by gust disturbance. Wing root bending moment is taken as an available measure of gust load and is used in a performance optimizing cost function to determine the load-alleviating control signal. However, both the disturbance signal and system matrices associated with wing root bending mome...
متن کامل